22 research outputs found

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure

    Modeling Magnification and Anisotropy in the Primate Foveal Confluence

    Get PDF
    A basic organizational principle of the primate visual system is that it maps the visual environment repeatedly and retinotopically onto cortex. Simple algebraic models can be used to describe the projection from visual space to cortical space not only for V1, but also for the complex of areas V1, V2 and V3. Typically a conformal (angle-preserving) projection ensuring local isotropy is regarded as ideal and primate visual cortex is often regarded as an approximation of this ideal. However, empirical data show systematic deviations from this ideal that are especially relevant in the foveal projection. The aims of this study were to map the nature of anisotropy predicted by existing models, to investigate the optimization targets faced by different types of retino-cortical maps, and finally to propose a novel map that better models empirical data than other candidates. The retino-cortical map can be optimized towards a space-conserving homogenous representation or a quasi-conformal mapping. The latter would require a significantly enlarged representation of specific parts of the cortical maps. In particular it would require significant enlargement of parafoveal V2 and V3 which is not supported by empirical data. Further, the recently published principal layout of the foveal singularity cannot be explained by existing models. We suggest a new model that accurately describes foveal data, minimizing cortical surface area in the periphery but suggesting that local isotropy dominates the most foveal part at the expense of additional cortical surface. The foveal confluence is an important example of the detailed trade-offs between the compromises required for the mapping of environmental space to a complex of neighboring cortical areas. Our models demonstrate that the organization follows clear morphogenetic principles that are essential for our understanding of foveal vision in daily life

    Coordinated optimization of visual cortical maps (II) Numerical studies

    Get PDF
    It is an attractive hypothesis that the spatial structure of visual cortical architecture can be explained by the coordinated optimization of multiple visual cortical maps representing orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we defined a class of analytically tractable coordinated optimization models and solved representative examples in which a spatially complex organization of the orientation preference map is induced by inter-map interactions. We found that attractor solutions near symmetry breaking threshold predict a highly ordered map layout and require a substantial OD bias for OP pinwheel stabilization. Here we examine in numerical simulations whether such models exhibit biologically more realistic spatially irregular solutions at a finite distance from threshold and when transients towards attractor states are considered. We also examine whether model behavior qualitatively changes when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. Our numerical results support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the spatially irregular architecture of the visual cortex. We discuss several alternative scenarios and additional factors that may improve the agreement between model solutions and biological observations.Comment: 55 pages, 11 figures. arXiv admin note: substantial text overlap with arXiv:1102.335

    On the Origins of Suboptimality in Human Probabilistic Inference

    Get PDF
    Humans have been shown to combine noisy sensory information with previous experience (priors), in qualitative and sometimes quantitative agreement with the statistically-optimal predictions of Bayesian integration. However, when the prior distribution becomes more complex than a simple Gaussian, such as skewed or bimodal, training takes much longer and performance appears suboptimal. It is unclear whether such suboptimality arises from an imprecise internal representation of the complex prior, or from additional constraints in performing probabilistic computations on complex distributions, even when accurately represented. Here we probe the sources of suboptimality in probabilistic inference using a novel estimation task in which subjects are exposed to an explicitly provided distribution, thereby removing the need to remember the prior. Subjects had to estimate the location of a target given a noisy cue and a visual representation of the prior probability density over locations, which changed on each trial. Different classes of priors were examined (Gaussian, unimodal, bimodal). Subjects' performance was in qualitative agreement with the predictions of Bayesian Decision Theory although generally suboptimal. The degree of suboptimality was modulated by statistical features of the priors but was largely independent of the class of the prior and level of noise in the cue, suggesting that suboptimality in dealing with complex statistical features, such as bimodality, may be due to a problem of acquiring the priors rather than computing with them. We performed a factorial model comparison across a large set of Bayesian observer models to identify additional sources of noise and suboptimality. Our analysis rejects several models of stochastic behavior, including probability matching and sample-averaging strategies. Instead we show that subjects' response variability was mainly driven by a combination of a noisy estimation of the parameters of the priors, and by variability in the decision process, which we represent as a noisy or stochastic posterior

    Online learning and stimulus-driven responses of neurons in visual cortex

    No full text
    In understanding how visual scene is processed in visual cortex, it has been an intriguing problem for theoretical and experimental neuroscientists to examine the relationship between visual stimuli and the induced responses of visual cortex. In particular, it is less explored whether and how the collective responses of visual neurons are patterned to reflect the geometrical regularities. In this paper, through a computation model and statistical analysis, we show that the orientation preference maps induced from correlated visual stimuli exhibit geometrical regularities similar as observed in natural images
    corecore